Solar evaporator solution for fresh drinking water
Researchers at the University of South Australia’s (UniSA) Future Industries Institute have developed a promising new process that could deliver safe drinking water to millions of vulnerable people using low-cost sustainable materials and sunlight.
The team led by Associate Professor Haolan Xu has refined a technique to derive fresh water from sea water, brackish water or contaminated water through solar evaporation — delivering enough daily fresh drinking water for a family of four from just one square metre of source water.
“In recent years, there has been a lot of attention on using solar evaporation to create fresh drinking water, but previous techniques have been too inefficient to be practically useful,” Dr Xu said.
“We have overcome those inefficiencies, and our technology can now deliver enough fresh water to support many practical needs at a fraction of the cost of existing technologies like reverse osmosis.”
At the heart of the system is a highly efficient photothermal structure that sits on the surface of a water source and converts sunlight to heat, focusing energy precisely on the surface to rapidly evaporate the uppermost portion of the liquid.
While other researchers have explored similar technology, previous efforts have been hampered by energy loss, with heat passing into the source water and dissipating into the air above.
“Previously many of the experimental photothermal evaporators were basically two dimensional; they were just a flat surface, and they could lose 10 to 20% of solar energy to the bulk water and the surrounding environment,” Dr Xu said.
“We have developed a technique that not only prevents any loss of solar energy, but actually draws additional energy from the bulk water and surrounding environment, meaning the system operates at 100% efficiency for the solar input and draws up to another 170% energy from the water and environment.”
In contrast to the two-dimensional structures used by other researchers, Dr Xu and his team developed a three-dimensional, fin-shaped, heatsink-like evaporator.
Their design shifts surplus heat away from the evaporator’s top surfaces (ie, solar evaporation surface), distributing heat to the fin surface for water evaporation, thus cooling the top evaporation surface and realising zero energy loss during solar evaporation.
This heatsink technique means all surfaces of the evaporator remain at a lower temperature than the surrounding water and air, so additional energy flows from the higher-energy external environment into the lower-energy evaporator.
“We are the first researchers in the world to extract energy from the bulk water during solar evaporation and use it for evaporation, and this has helped our process become efficient enough to deliver between 10 and 20 litres of fresh water per square metre per day,” Dr Xu said.
In addition to its efficiency, the practicality of the system is enhanced by the fact it is built entirely from simple, everyday materials that are low cost, sustainable and easily obtainable.
“One of the main aims with our research was to deliver for practical applications, so the materials we used were just sourced from the hardware store or supermarket,” Dr Xu said.
“The only exception is the photothermal materials, but even there we are using a very simple and cost-effective process, and the real advances we have made are with the system design and energy nexus optimisation, not the materials.”
In addition to being easy to construct and easy to deploy, the system is also very easy to maintain, as the design of the photothermal structure prevents salt and other contaminants building up on the evaporator surface.
The system could be suitable for deployment in remote communities that can't afford other options.
In addition to drinking water applications, Dr Xu says his team is currently exploring a range of other uses for the technology, including treating wastewater in industrial operations.
“There are a lot of potential ways to adapt the same technology, so we are really at the beginning of a very exciting journey,” he said.
How to navigate Australia’s new climate regulations
Australia’s new mandatory climate reporting regulations are set to take effect next year,...
A concrete use for carpet fibres
Australian engineers have come up with an unexpected use for discarded carpets: as a means to...
COP29: finance, a "crucial" opportunity and a seat at the table
Leaders and diplomats from around the world are descending on Baku, Azerbaijan, this month for...