Geothermal pilot heats up
Geothermal experts from the University of Melbourne are working with the Department of Primary Industries to demonstrate the efficiency of a form of renewable energy that will play an important role in the energy mix of Victoria’s Future.
The Victorian Government recently announced a $1.6 million grant to support the work of the university and its industrial partners, Geotechnical Engineering and Direct Energy. Professor Ian Johnston, along with team members from the Department of Infrastructure Engineering’s Geotechnical Research Group and their partners, welcomed the grant and the opportunities the funding will provide.
“This is a significant shift in the way we think about heating and cooling our buildings,” Professor Johnston said. “Our trial will collect important data about the use of direct geothermal energy systems in Victorian conditions, in order to help develop greater efficiency in installation practices and design. Although direct geothermal energy is still a relatively new concept in Australia, this technology is used extensively overseas with an estimated three million installations worldwide.
“The capital costs of installing a direct geothermal system are still a little high. But with industry becoming better geared to needs, and with better systems of design and installation, prices should fall significantly over the next year or two. This, combined with the likely major increase in the cost of conventionally derived energy, will mean that capital costs can be recovered in a few short years.”
Under the project, the University of Melbourne Geotechnical Group, Geotechnical Engineering and Direct Energy will install geothermal heating and cooling systems into a range of buildings around Victoria and will monitor their performance.
Geothermal energy systems work by circulating fluid, water or refrigerant down pipes that are installed within building foundations or into purpose-drilled boreholes or trenches and back to the surface again. In winter, heat contained in the circulating fluid is extracted by a ground source heat pump and used to heat the building. In summer, the system is reversed, with heat extracted out of the building by the heat pump, transferred to the circulating fluid and then deposited underground.
While geothermal energy does not generate or replace the need for electricity, it is an electricity-saving technology with the potential to reduce greenhouse emissions and cost of heating and cooling by up to 75%.
Sustainable organic batteries for future energy storage
A rechargeable proton battery being developed by scientists at UNSW Sydney has the potential to...
CSIRO's solar venture secures $15 million funding
FPR Energy, a new venture from CSIRO, has secured $15 million in seed funding.
Aust partnership leads to solar-powered canola
Riverina Oils, a NSW canola oil producer, has partnered with Australian renewable energy retailer...