Microbes to clean up nuclear waste and generate biodiesel
Researchers from Michigan State University (MSU) have developed a concept that will allow biodiesel plants to eliminate the creation of hazardous wastes while also removing their dependence on fossil fuels. The study has been published in the journal Environmental Science and Technology.
MSU microbiological Gemma Reguera, a co-author on the study, developed patented adaptive-engineered bacteria called Geobacter sulfurreducens. Geobacter are naturally occurring microbes that have proved promising in cleaning up nuclear waste and in improving other biofuel processes.
“Geobacter shield themselves from uranium by producing hair-like filaments that attract and bind the uranium very strongly,” Reguera said. “The bacterial hairs are fully charged with electricity, just like a live electrical wire, and zap the uranium. And what happens next is simple chemistry - the soluble, dangerous uranium is immobilised onto the wires as a mineral. This prevents its spread and protects us from exposure.”
Reguera, along with lead authors and MSU graduate students Allison Speers and Jenna Young, evolved Geobacter to withstand increasing amounts of toxic glycerol. They then searched for partner bacteria that could ferment it into ethanol while generating by-products that ‘fed’ the Geobacter.
“It took some tweaking, but we eventually developed a robust bacterium to pair with Geobacter,” Reguera said. “We matched them up like dance partners, modifying each of them to work seamlessly together and eliminate all of the waste.
“[The bacteria] feast like they’re at a Las Vegas buffet. One bacterium ferments the glycerol waste to produce bioethanol, which can be re-used to make biodiesel from oil feedstocks. Geobacter removes any waste produced during glycerol fermentation to generate electricity. It is a win-win situation.”
The microbes are the featured component of Reguera’s microbial electrolysis cells, or MECs. These fuel cells do not harvest electricity as an output - rather, they use a small electrical input platform to generate hydrogen and increase the MEC’s efficiency even more.
Through a Michigan Translational Research and Commercialization grant, Reguera and her team are now developing prototypes that can handle larger volumes of waste. She is also in talks with MBI, an enterprise operated by the MSU Foundation, to develop industrial-sized units that could handle the capacities of a full-scale biodiesel plant.
“Traditional approaches see producers pay hefty fees to have toxic wastewater hauled off to treatment plants,” Reguera said. “By cleaning the water with microbes on-site, we’ve come up with a way to allow producers to generate bioethanol, which replaces petrochemical methanol. At the same time, they are taking care of their hazardous waste problem.”
Can we really 'electrify everything'?
Energy experts have debated the practicality of achieving full electrification on a global or...
Councils collectively save on energy
Thirteen regional New South Wales councils have pooled their resources to make the shift to...
From coal to clean: accelerating Asia's renewable energy transition
As Asia faces mounting climate challenges and rising energy demands, the push to shift from coal...